Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish.

نویسندگان

  • G A Unguez
  • H H Zakon
چکیده

In most groups of electric fish, the electric organ (EO) derives from striated muscle cells that suppress many muscle phenotypic properties. This phenotypic conversion is recapitulated during regeneration of the tail in the weakly electric fish Sternopygus macrurus. Mature electrocytes, the cells of the electric organ, are considerably larger than the muscle fibers from which they derive, and it is not known whether this is a result of muscle fiber hypertrophy and/or fiber fusion. In this study, electron micrographs revealed fusion of differentiated muscle fibers during the formation of electrocytes. There was no evidence of hypertrophy of muscle fibers during their phenotypic conversion. Furthermore, although fish possess distinct muscle phenotypes, the extent to which each fiber population contributes to the formation of the EO has not been determined. By using myosin ATPase histochemistry and anti-myosin heavy chain (MHC) monoclonal antibodies (mAbs), different fiber types were identified in fascicles of muscle in the adult tail. Mature electrocytes were not stained by the ATPase reaction, nor were they labeled by any of the anti-MHC mAbs. In contrast, mature muscle fibers exhibited four staining patterns. The four fiber types were spatially arranged in distinct compartments with little intermixing; peripherally were two populations of type I fibers with small cross-sectional areas, whereas more centrally were two populations of type II fibers with larger cross-sectional areas. In 2- and 3-week regenerating blastema, three fiber types were clearly discerned. Most (> 95%) early-forming electrocytes had an MHC phenotype similar to that of type II fibers. In contrast, fusion among type I fibers was rare. Together, ultrastructural and immunohistochemical analyses revealed that the fusion of muscle fibers gives rise to electrocytes and that this fusion occurs primarily among the population of type II fibers in regenerating blastema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reexpression of myogenic proteins in mature electric organ after removal of neural input.

The electric organ (EO) of the weakly electric fish Sternopygus macrurus derives from striated myofibers that fuse and suppress many muscle properties. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, or express myosin heavy chain (MHC) or tropomyosin. Furthermore, electrocytes express keratin, a protein not expressed in muscle. In S. macrurus the EO is driven conti...

متن کامل

Skeletal muscle transformation into electric organ in S. macrurus depends on innervation.

The cells of the electric organ, called electrocytes, of the weakly electric fish Sternopygus macrurus derive from the fusion of mature fast muscle fibers that subsequently disassemble and downregulate their sarcomeric components. Previously, we showed a reversal of the differentiated state of electrocytes to that of their muscle fiber precursors when neural input is eliminated. The dependence ...

متن کامل

Development and regeneration of the electric organ.

The electric organ has evolved independently from muscle in at least six lineages of fish. How does a differentiated muscle cell change its fate to become an electrocyte? Is the process by which this occurs similar in different lineages? We have begun to answer these questions by studying the formation and maintenance of electrocytes in the genus Sternopygus, a weakly electric teleost. Electroc...

متن کامل

Electrocyte physiology: 50 years later.

Weakly electric gymnotiform and mormyrid fish generate and detect weak electric fields to image their worlds and communicate. These multi-purpose electric signals are generated by electrocytes, the specialized electric organ (EO) cells that produce the electric organ discharge (EOD). Just over 50 years ago the first experimental analyses of electrocyte physiology demonstrated that the EOD is pr...

متن کامل

Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus.

In most groups of electric fish, the current-producing cells of electric organs (EOs) derive from striated muscle fibers but retain some phenotypic characteristics of their precursor muscle cells. Given the role of the MyoD family of myogenic regulatory factors (MRFs) in the transcriptional activation of the muscle program in vertebrates, we examined their expression in the electrocytes of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 399 1  شماره 

صفحات  -

تاریخ انتشار 1998